Towards Monocular Vision based Obstacle Avoidance through Deep Reinforcement Learning

نویسندگان

  • Linhai Xie
  • Sen Wang
  • Andrew Markham
  • Agathoniki Trigoni
چکیده

Obstacle avoidance is a fundamental requirement for autonomous robots which operate in, and interact with, the real world. When perception is limited to monocular vision avoiding collision becomes significantly more challenging due to the lack of 3D information. Conventional path planners for obstacle avoidance require tuning a number of parameters and do not have the ability to directly benefit from large datasets and continuous use. In this paper, a dueling architecture based deep double-Q network (D3QN) is applied for obstacle avoidance, using only monocular RGB vision. Based on the dueling and double-Q mechanisms, D3QN can efficiently learn how to avoid obstacles even with very noisy depth information predicted from RGB image. Extensive experiments show that D3QN enables twofold acceleration on learning compared with a normal deep Q network and the models trained solely in virtual environments can be directly transferred to real robots, generalizing well to various new environments with previously unseen dynamic objects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Persistent self-supervised learning principle: from stereo to monocular vision for obstacle avoidance

Self-Supervised Learning (SSL) is a reliable learning mechanism in which a robot uses an original, trusted sensor cue for training to recognize an additional, complementary sensor cue. We study for the first time in SSL how a robot’s learning behavior should be organized, so that the robot can keep performing its task in the case that the original cue becomes unavailable. We study this persiste...

متن کامل

A Flexible Framework for Vision based Obstacle Avoidance Problem

This paper addresses a new architecture that employs optical flow for vision based obstacle avoidance problem for mobile robot navigation. The proposed architecture utilizes monocular vision for navigation and obstacle avoidance. Real experiments to guide a Pioneer 3-DX mobile robot in indoor environments are presented, and the analysis of the results allow us to validate the proposed behavior ...

متن کامل

Self-learning navigation algorithm for vision-based mobile robots using machine learning algorithms

Many mobile robot navigation methods use, among others, laser scanners, ultrasonic sensors, vision cameras for detecting obstacles and following paths. However, humans use only visual (e.g. eye) information for navigation. In this paper, we propose a mobile robot control method based on machine learning algorithms which use only camera vision. To efficiently define the state of the robot from r...

متن کامل

Reactive Vision-Based Navigation Controller for Autonomous Mobile Agents

Initial results of an ongoing research in the field of reactive mobile autonomy are presented. The aim is to create a reactive obstacle avoidance method for mobile agent operating in dynamic, unstructured, and unpredictable environment. The method is inspired by the stimulus-response behavior of simple animals. An obstacle avoidance controller is developed that uses raw visual information of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1706.09829  شماره 

صفحات  -

تاریخ انتشار 2017